Google Interview Prep Guide
Front End/Mobile Software

What's a Front End/Mobile Software Engineer?

inge how
0 SWE, you'll
s in dozens of
Ple Search, Google

Front End/Mobile Software Engineers at Google develop the ng
millions of users connect, explore and interact with informajg
specialize in building responsive and elegant web appli
languages. You'll help Google build next-generation
Maps, Google+ and more.

Why Google? Impact.

h a broad set of technical skills
P make an impact on millions, if not
Farch, they routinely work on massive
Fevelop entirely new platforms around the
to Maps, Google engineers are changing the

Google is and always will be an enging
who are ready to tackle some of tg
billions, of users. At Google, eg
scalability and storage solutig
world. From AdWords to
world one technologica




General Interview Tips

Explain: We want to understand how you think, so explain your thought process and decision making
throughout the interview. Remember we're not only evaluating your technical ability, but also how you
approach problems and try to solve them. Explicitly state and check assumptions with your interyiewer to
ensure they are reasonable.

Clarify: Many of the questions will be deliberately open-ended to provide insight into w
information you value within the technological puzzle. We're looking to see how
problem and your primary method for solving it. Be sure to talk through your thought
ask specific questions if you need clarification.

Improve: Think about ways to improve the solution you present.It's worthy
initial thoughts to a question. In many cases, your first answer mg
explanation. If necessary, start with the brute force solution and imprg
that's what you're doing and why.

Practice: You won't have access to an IDE or compiler during
or a whiteboard. Be sure to test your code and ensure itg
small syntactical errors like which substring to use fog
pick one and let your interviewer know.

Bde on paper
't stress about
Etart, length) — just

terviews

Er data structures and algorithms. Be prepared to write around 20-30 lines of
guage. Approach all scripting as a coding exercise — this should be clean, rich,

Fasked an open ended question. Ask clarifying questions, devise requirements.

be asked to explain it in an algorithm.

3. ert it to a workable code.(Hint: Don't worry about getting it perfect because time is limited.
Write what comes but then refine it later. Also make sure you consider corner cases and edge
cases, production ready.)

4. Optimize the code, follow it with test cases and find any bugs.

careers GO gle



The Coding & Algorithm Interviews

Coding: You should know at least one programming language reall
or C. You will be expected to know APIs, Object Orientated Desig
as well as come up with corner cases and edge cases fg
understanding rather than memorization.

Onceptual

Algorithms: Approach the problem with both botto
know the complexity of an algorithm and how youg
Google problems include sorting (plus segg
programming/memoization, greediness, rec
Big-O notations (e.g. run time) and be
recommend discussing or outlining thg

ill be expected to
hat are used to solve
Fe-and-conquer, dynamic
Pecific data structure. Know
ms like Dijkstra and A*. We

Sorting: Be familiar with commg
not. Think about efficiency
insertion-sort or radix-sort

ind of input data they're efficient on or
e used. For example, in exceptional cases
UickSort/MergeSort/HeapSort answers.

Data Structures: YQ
frequently used a
and binary treg
tendto go g

Wata structures as possible. Data structures most
s, hash-sets, hash-maps, hash-tables, dictionary, trees
now the data structure inside out, and what algorithms

ic discrete math questions. This is more prevalent at Google than
ng problems, probability problems and other Discrete Math 101
e time before the interview refreshing your memory on (or teaching
entary probability theory and combinatorics. You should be familiar with
rilk.

problem can be applied with graph algorithms like distance, search, connectivity,
Y There are three basic ways to represent a graph in memory (objects and pointers,
, ency list) — familiarize yourself with each representation and its pros and cons. You should
know ¥ Wsic graph traversal algorithms, breadth-first search and depth-first search. Know their
computai®nal complexity, their tradeoffs and how to implement them in real code.

Recursion: Many coding problems involve thinking recursively and potentially coding a recursive solution.
Use recursion to find more elegant solutions to problems that can be solved iteratively.

careers GO gle



Front End and Mobile Technical Prep

Web Front End: You should be ready to cover topics like front end latency and implementation of standard
CS algorithms using idiomatic JavaScript. You should be able to articulate Javascript strengths and
shortcomings and ready to cover any of the following:

® Web security issues (XSS, XSRF) ® Browser / DOM events & event handling
@ Prototypal inheritance ® XHR requests & HTTP headers
@ DOM API & manipulation @ JavaScript closures

@ CSS manipulation

Native: Be ready to cover implementation of standard CS algorithms using ig
Swift, and have awareness of chosen language strengths and shortcomingg

@ How to split tasks in a Ul-friendly way (e.g. threading/GCD, not stog
@ Structuring APKs for a large application, managing permission
® Building offline functionality (Android)

® Leveraging Intents and Intent Filters (Android)

P some basic data
0, you don't have the
actions and understand
Emory management model,
Dispatch and performance.
troller concepts, UlView structure
Dut subviews.

10S: Focus on translating ideas to code. You shou
structures available in Foundation (NSArray, NSDig
memorize the block syntax!). Show ability to
limitations and system behaviors. Understg
object-oriented features, protocols, delg
Demonstrate ability to create screensg
and best practices. Understand ho

Front End/Mobile Design Ig
knowledge, theory, experj
topics include Web Apg

d to assess a candidate's ability to combine
g a real-world engineering problem. Sample
¢ the front-end and the back-end meet).

About Google

Company - Google

The Google story

rets to Landing Your Next Job Life @ Google

uojanen, Noah Kindler Google Developers

Open Source Projects
Github: Google Style Guide

Google Publications
The Google File System
Bigtable

MapReduce

Google Spanner
Coaching Session:Tech Interviewing Google Chubby

CodeJam: Practice & Learn
Technical Development Guide

es Leiserson, Ronald Rivest, Clifford Stein

careers GO gle


https://books.google.ie/books?id=nlgWywAACAAJ&dq=Cracking+the+Coding+Interview&hl=en&sa=X&ei=hUTtUfXVCoSg4gS5v4C4BQ
https://books.google.com/books/about/Programming_Interviews_Exposed.html?id=9_by-rpCSSUC&hl=en
https://books.google.com/books/about/Programming_Pearls_2_E.html?id=vyhrriC6qcEC&hl=en
https://books.google.com/books/about/Introduction_to_Algorithms.html?id=VK9hPgAACAAJ&hl=en
http://www.google.com/about/careers/lifeatgoogle/hiringprocess/
http://www.google.com/about/careers/lifeatgoogle/interviewinggoogle.html
https://www.youtube.com/watch?v=oWbUtlUhwa8
https://code.google.com/codejam/contests.html
https://www.google.com/about/careers/students/guide-to-technical-development.html
http://www.google.com/about/company/
https://www.youtube.com/watch?v=WLttC-hKwMA&feature=youtu.be
https://www.youtube.com/user/lifeatgoogle
https://developers.google.com/
https://developers.google.com/open-source/projects
https://github.com/google/styleguide
http://research.google.com/archive/gfs.html
http://research.google.com/archive/bigtable.html
http://research.google.com/archive/mapreduce.html
http://research.google.com/archive/spanner.html
http://research.google.com/archive/chubby.html

